
J. Fluid Mech. (1994), uol. 266, p p .  243-276 
Copyright 0 1994 Cambridge University Press 

243 

Solitons, solitary waves, and voidage disturbances 
in gas-fluidized beds 

By S. E. HARRIS A N D  D. G. CRIGHTON 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 1 February 1993 and in revised form 15 August 1993) 

In this paper, we consider the evolution of an initially small voidage disturbance in a 
gas-fluidized bed. Using a one-dimensional model proposed by Needham & Merkin 
(1983), Crighton (1991) has shown that weakly nonlinear waves of voidage propagate 
according to the Korteweg-de Vries equation with perturbation terms which can be 
either amplifying or dissipative, depending on the sign of a coefficient. Here, we 
investigate the unstable side of the threshold and examine the growth of a single KdV 
voidage soliton, following its development through several different regimes. As the 
size of the soliton increases, KdV remains the leading-order equation for some time, 
but the perturbation terms change, thereby altering the dependence of the amplitude 
on time. Eventually the disturbance attains a finite amplitude and corresponds to a fully 
nonlinear solitary wave solution. This matches back directly onto the KdV soliton and 
tends exponentially to a limiting size. We interpret the series of large-amplitude 
localized pulses of voidage formed in this way from initial disturbances as 
corresponding to the ‘voidage slugs’ observed in gas fluidization in narrow tubes. 

1. Introduction 
Fluidized beds are used extensively in industry for processes such as catalytic 

reactions, which require a good contact area between a fluid and a solid. Particles with 
diameters ranging from 50 pm to 1 mm are normally used, and these rest on each other 
on a porous plate in a vertical tube. Fluid is pumped upward through the system and, 
at a certain velocity, the upward drag of the fluid on the particles balances the 
gravitational force. Then the particles become mobile and buoyant, and the bed is said 
to be fluidized. In this state, it exhibits many liquid-like phenomena, such as surface 
waves. 

In gas-fluidized beds, it is possible for uniform expansion to occur over a mal l  range 
of gas velocities (particularly for fine powders) but at higher flow rates the bed becomes 
unstable and some of the fluid passes through the bed in the form of bubbles or slugs. 
This behaviour can also occur in liquid-fluidized beds when the ratio of the density of 
the solid to that of the liquid is high (e.g. lead shot fluidized with water). In most liquid- 
fluidized beds, however, although instability is present and can be seen in the form of 
wavy structures, this does not lead rapidly to bubble formation. 

Bubbles are approximately spherically shaped regions of essentially particle-free gas 
propagating upward. They occur in wide beds, whereas slugs are present in narrow 
tubes. There are two sorts of slugging, both of which are strongly influenced by the 
container walls. In the first type, highly deformed bubbles (whose frontal diameters are 
equal to the size of the tube) rise slowly and displace particles, which flow down at the 
sides. In the second type, which is common in tubes up to 5 cm in diameter, we have 
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slowly rising bands of particle-deficient regions, with rapid particle raining occurring 
at the interfaces. More detailed descriptions of these different regimes can be found in 
Davidson & Harrison (1963) and Zenz (1971). It is with the second type of voidage slug 
that we are concerned here, through study of a strictly one-dimensional but highly 
nonlinear model. 

The presence of bubbles or slugs in a fluidized bed is undesirable in practical 
applications, as the efficiency of the process is reduced because of the diminished 
contact surface between the two phases. Therefore, much interest has been shown in 
the mathematical modelling of such systems in order to try and understand the 
mechanisms governing instability. However, the modelling itself is highly controversial, 
with many authors trying to formulate governing equations using a variety of different 
assumptions and experimental correlations. 

A popular approach, which we shall adopt here, used by Jackson (1963a, b), Garg 
& Pritchett (1975), Homsy, El-Kaissy & Didwania (1980), Needham & Merkin (1983), 
Foscolo & Gibilaro (1984, 1987), Crighton (1991) and others, is that of interacting 
continua. The point variables are averaged over a volume which is small compared to 
the whole system, but is large compared to the particle size and spacing. This yields 
continuum equations for the particles and for the fluid, which are then treated as two 
interpenetrating one-phase fluids. It is usually helpful to write the equations in terms 
of a voidage fraction, which is defined to be the volume of fluid in unit volume of the 
two-phase mixture. 

Jackson (1963a), Murray (1965), Garg & Pritchett (1975) and Homsy et al. (1980) 
have all carried out linear instability analyses of a small disturbance superimposed on 
a uniformly fluidized bed. Jackson (1963a) predicts greater growth rates in gas- 
fluidized beds than in liquid ones but both he and Murray (1965) find the bed to be 
unstable in all cases. This disagrees with observations, and Garg & Pritchett (1975) 
show the importance of including a ‘particle pressure’ which has a stabilizing influence. 
The linear instability analysis does not guarantee that the perturbation will grow into 
well-formed bubbles or slugs, as once the perturbation amplitude is large enough, 
nonlinear effects must be taken into account, while further linear mechanisms also come 
into play, and tend themselves to disperse voidage concentrations. This is supported by 
the experimental evidence of El-Kaissy & Homsy (1976) who have made careful visual 
and quantitative measurements in liquid-fluidized beds showing that voidage waves 
initially show an exponential increase in amplitude, but that this growth is not 
maintained, and eventually equilibrium values of amplitude and velocity are reached. 
The qualitative results are expected to be similar for gas-fluidized beds. 

A few studies have examined nonlinear effects, although the inclusion of the 
nonlinear terms presents a severe impediment to analysis. Fanucci, Ness & Yen (1979) 
consider nonlinear continuum conservation equations for mass and momentum, but 
they neglect internal friction to give a hyperbolic system, which can then be solved by 
using the method of characteristics. Their analysis is limited to an initially sinusoidal 
perturbation and they show that a shock wave can form, which they take to be a bubble 
front. Verloop & Heertjes (1970) also consider shock waves and bubbles to be 
equivalent and examine shock wave formation as a criterion for bubbling behaviour. 
However, comparison between experiment and theory by Homsy et al. (1980) suggests 
that internal friction effects may have a significant influence on small-amplitude waves, 
so that one needs to include ‘particle viscosity’ effects in the model equations. Sasa & 
Hayakawa (1992) derive a Korteweg-de Vries (KdV) equation for weakly unstable 
fluidized beds when the particle viscosity is significant. Komatsu & Hayakawa (1993) 
examine the Sasa & Hayakawa (1992) model numerically in one dimension and observe 
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soliton-like behaviour in that an initial condition corresponding to the presence of two 
KdV solitons is found to evolve through propagation and interaction of the two pulses 
essentially as prescribed for the solitons of the KdV equation. They also derive a 
perturbed KdV equation which includes a weak dependence on a transverse coordinate. 
Liu (1982) examines the linear theory in terms of wave hierarchies and derives a 
linearized Burgers-Korteweg-de Vries equation for the voidage fraction. In a later 
paper (Liu 1983), weak nonlinear effects are taken into account and it is shown that, 
for supercritical disturbances, amplitude and velocity equilibration is possible (after 
truncation of an infinite set of coupled nonlinear equations). 

Needham & Merkin (1983) analyse both the linearized equations for their gas- 
fluidized bed model and also a nonlinear model equation, the latter showing from 
limited numerical evidence that voidage fronts will develop. However, there is some 
doubt as to the validity of their nonlinear equation, over which terms have been 
retained and which have been neglected. Instead, Crighton (1991) derives a 
Burgers-Korteweg-de Vries equation (where the Burgers term is the leading-order 
perturbation) for the voidage disturbance to a homogeneous bed and this balances the 
nonlinear perturbations with the dispersive and small dissipative (amplifying) effects. 
The stable Burgers-KdV equation has also been derived by Kurdyumov & Sergeev 
(1987) for small perturbations to a uniformly fluidized bed, but Crighton (1991) shows 
that the coefficient of the dissipative term can take either sign. In the similar problem 
of weakly nonlinear waves in suspensions of particles in fluids, Kluwick (1983, 1991) 
has derived the Burgers-KdV equation and what he terms the ‘modified Burgers-KdV 
equation’, which has a cubic nonlinear term as well as a quadratic one. The latter 
equation is appropriate near the region where the coefficient of the quadratic term 
vanishes and in both cases the ‘dissipative term’ can be of either sign. In all these 
situations, the interest lies on the unstable side of the threshold, as this is where 
growth occurs and where the characteristic behaviour is not well understood at 
present. 

A recent paper by Batchelor (1988) must be mentioned too. It considers both 
fluidized beds and the hindered settling of particles in a liquid, which Batchelor argues 
are essentially the same phenomena, but just referred to different axes. In hindered 
settling, particles are dispersed throughout the fluid in a vertical tube and fall under the 
influence of gravity. However, the drag coefficient of each particle is dependent on the 
particle concentration so that if there are more particles present, then the drag on each 
one is higher. Thus the rate of settling is lower than might be expected. Batchelor 
predicts kinematic waves with damping due to the gradient diffusivity of the particles 
for small Froude number F, with damped dynamic waves at large Froude number. 
However, if the diffusivity is assumed to be O(F2) where F < 1, which is realistic for 
fluidized beds, then instead of a damped kinematic wave equation, we can again derive 
the Burgers-KdV equation with the possibility of amplification. Thus this appears to 
be a canonical equation for the propagation of small voidage disturbances in a 
uniformly fluidized bed. 

Here we will use the one-dimensional Needham & Merkin (1983) model, with a 
modification to the particle pressure, and present the derivation of the Burgers-KdV 
equation by Crighton (1991), which is then used as the initial basis for the work in this 
paper. The leading-order equation is KdV and so any arbitrary initial disturbance will 
break up into a finite number of solitons which are permanently separated after a short 
time. Thus it is permissible to just examine the behaviour of an isolated soliton and so, 
as a suitable initial condition, we begin with a single KdV soliton. The soliton is of 
greater voidage than the uniform state and rises through the bed at constant velocity 
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and unchanged in shape. If we include the small amplification effects, then the soliton 
will grow and there is the possibility of a small initial voidage non-uniformity growing 
to become an O( 1) disturbance to the background voidage fraction. 

To find a solution to the perturbed KdV equation, we apply a multiple-scales 
analysis, which allows the arbitrary constant defining the soliton size and speed to vary 
on a longer timescale. This yields a secularity condition, necessary to suppress 
resonant terms in the expansion, showing that the amplitude and velocity have a$nite- 
time singularity on this new timescale. Physically, this is of course impossible as the 
voidage fraction must remain less than unity, which is the pure fluid limit, but the 
presence of a finite-time singularity may be taken to indicate that the initially weakly 
nonlinear voidage soliton will eventually grow into a large-amplitude wave. 

The approximations required to derive the KdV equation with Burgers perturbation 
terms eventually cease to be valid because the soliton amplitude is growing. If we 
rescale the original set of equations close to the finite-time singularity, then other terms 
become of the same order of magnitude as the previous perturbation terms, and so we 
must retain these as well. In fact there is a whole sequence of such changes as the 
original perturbation terms become smaller in magnitude relative to the other terms 
and are exchanged in the asymptotic sequence. Some of these higher-order terms 
contribute to the secularity condition, and alter the way in which the amplitude of the 
soliton grows in time, weakening the singularity. 

Eventually there is a fundamental change in solution when the soliton perturbation 
finally becomes O(1) and at this time the original set of equations must be rescaled 
again to find new, fully nonlinear equations for the voidage fraction and the particle 
velocity. The new equations admit solitary wave solutions for the voidage fraction at 
leading order, although these cannot be expressed in closed form and must be 
integrated numerically. The dependence of the velocity on the amplitude of the solitary 
wave can also be written down in terms of quadratures. If a multiple-scales analysis is 
applied to the solitary wave, allowing its velocity (and hence its amplitude) to vary 
slowly, then an expression can be found for the secularity condition. An examination 
of this when the amplitude of the solitary wave is small shows that it reduces to the last 
secularity condition found for the growing soliton. The method of matched asymptotic 
expansions then indicates that the soliton and the solitary wave are indeed matched 
directly without the need for an intermediate, time-dependent region. It is also 
shown that although the amplitude of the solitary wave is still increasing, there is a 
limiting value, with the amplitude tending exponentially to this maximum value. 
Thus, the analysis has been successful in following the development from an 
infinitesimal perturbation on a uniform bed right through to a fully nonlinear O( 1) 
wave. 

2. Basic formulation 
Here we will use the one-dimensional model of Needham & Merkin (1983), which 

is appropriate for gas-fluidized beds in narrow tubes. For a two-phase flow model we 
require two mass conservation equations : one each for the particles and the fluid, since 
the particles do not move with the fluid. It is convenient to express the equations in 
terms of the voidage fraction q5. (Note that in some papers, e.g. Batchelor 1988, q5 is 
used to mean the particle volume fraction, which is 1 - q5 here.) We require the voidage 
to lie between 0 and 1, i.e. the pure solid and pure fluid limits, but in fact the voidage 
fraction cannot be smaller than approximately 0.26, which is the volume left unfilled 
by spherical particles in cubic close-packing mode. 
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Assuming that both phases are incompressible, we have 

and - 

-+-($24) a$ a = 0 
at ax 

a$ a -+-([l -$]?I) = 0, 
at ax 

for the fluid and particles, respectively, where t is time, x is the coordinate vertically 
upward, u the fluid velocity and 0 the particle velocity. These two equations have a first 
integral 

$U + (1 - $1 u = Q(t>, (2.3) 

which can be used in place of one of the mass conservation equations when closing the 
system and its shows that the net volume flux across all horizontal planes is the same 
at any given time. 

We also require two momentum equations and, following Crighton (1991), we write 
the particle momentum equation in the form 

where the terms on the left-hand side represent particle inertia, the first term on the 
right-hand side is the drag force of the fluid on the particles, which is modelled by a 
drag coefficient B($) multiplied by the relative velocity (u-u) of the two phases, the 
second term is the gravitational force, and interparticle effects are assumed to be 
representable as the gradient of a stress S.  These interparticle effects arise from short- 
range forces, including barrier forces which prevent a particle from occupying a site 
already occupied by another particle. (For a more detailed discussion of the nature of 
S and of the microscopic phenomena which contribute to S, see Batchelor 1988.) 

In a similar way, we can write down a momentum equation for the fluid, namely 

We have omitted the virtual mass term from (2.5), which is retained in other models 
such as that of Auzerais, Jackson & Russel (1988) for the transient settling of particles, 
but here we are interested solely in gas-fluidized beds and so this approximation is 
justified. The assumption that pf < ps for gas-solid systems leads to a simplification, as 
a comparison of (2.5) with (2.4) shows that we can neglect the fluid inertia terms on the 
left-hand side as well as the gravitational term. The fluid viscosity p f  is small for a 
typical gas-fluidized bed, so the explicit appearance of this term may also be neglected, 
although fluid viscosity effects are important in the drag force, but these are 
incorporated into the drag coefficient term B($). Thus the fluid momentum equation 
reduces to 

aPflax = - B($) (u - u), (2.6) 

and hence just determines the fluid pressure pf in terms of $, u, 0, which must be found 
from the other three equations. Therefore, we can ignore this equation when solving 
the system. 

To close the system of equations, we must now make some assumptions and 
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hypotheses about the dependence of the drag coefficient B on the voidage fraction 4 
and also about the form taken by the stress S. We will assume that the stress can be 
decomposed into two constituent elements, one of which we will call a 'particle 
pressure' p,, and we shall assume that the second part of the stress depends on the 
velocity gradient field through a 'particle viscosity' p,, in the same way as for a one- 
phase Newtonian fluid. Thus we can write the stress as 

(2.7) s = -ps +ps aqax. 

Instead of a particle pressure, Batchelor (1988) has a term involving the diffusivity and 
he also uses a slightly different form for the second term in the stress which essentially 
entails making the viscosity a function of voidage, vanishing as 4 --f 1. However, we will 
retain the constant-ps assumption for the first approximation as this is certainly 
applicable for small departures from the uniform state. 

A suitable form for B(4) is given by Needham & Merkin (1983) and Goz (1992) as 

where V, is the volume of a single particle, Do is the Stokes drag on an isolated 
sphere and the index n lies in the range 3 4 .  This form is chosen so that the uniform 
state satisfies the Richardson-Zaki relation, which is an experimental correlation 
(Richardson 1971). 

Drew & Segal (1971), Jackson (1971) and Homsy et al. (1980) all suggest that the 
particle pressure ps is a monotonic decreasing function of the voidage, and Needham 
& Merkin (1983) assume a linear dependence and impose the condition that the particle 
pressure must vanish as 4 + 1, which is the pure fluid limit. However, we also require 
the pressure to prevent the voidage decreasing below the close-packing limit and 
therefore we suggest the form 

where 8 is a positive constant and $ c p  is the voidage at close packing. This form allows 
a stable regime for a range of 4 > q5cp, unlike the corresponding expression used by 
Needham & Merkin (1983). More complicated expressions for the dependence of the 
pressure on voidage are also possible but these have little effect on the analysis. 

The equations now form a closed system and they have the simple solution of 
uniform fluidization : 

(2.10) 

in which the voidage fraction and gas velocity are constant and the particles have no 
mean vertical velocity. The last of these expressions is the Richardson-Zaki relation 
where is the terminal free-fall velocity of an isolated particle in static fluid. If we 
introduce a localized voidage disturbance of lengthscale h, we can then non- 
dimensionalize the equations, setting 

(2.1 I) 
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On dropping the tildes from the dimensionless variables and using (2.3) to eliminate u 
from the particle momentum equation, we have the system 

--+-([l a$ a -$]v) = 0, 
at ax 

(2.12) 

a$ 1 a2v n+1 

(1 -$)(:+v$) = y($) (1 -i)-!$-p;($)G+zQ, (2.13) 

where F2 = q / g h  is the square of a Froude number and R = ps Qh/,uu, is a particle- 
phase Reynolds number. Note that these are different from the Reynolds and Froude 
numbers used by Batchelor (1988). These equations define $ and v as functions of x ,  
t and constitute a particle bed model, as we are just working with the particle mass and 
momentum conservation equations. 

Some experimental results for typical gas-fluidized beds are given by Schiigerl(l971). 
For glass beads with diameters of the order of 50 pm, the minimum interstitial 
fluidization velocity is approximately 5.7 cm s-l, with an effective kinematic bed 
viscosity of 1.9 cm2 s-’. The experiments by El-Kaissy & Homsy (1976) suggest that 
voidage waves have a width of 1 cm and so we will take this as our disturbance 
lengthscale h. Thus F2 = 0.03, R = 3 and so the scalings R = O(l), and F2 4 1 are 
appropriate, and we will use them in the next section. This is in no way to imply that 
other parts of the (R, F )  parameter space are without possible physical interest. 
However, our consideration of the limit F-t  0, R = O( 1) seems appropriate for 
correspondence with some laboratory-scale experiments and will be seen to lead to the 
emergence of large-scale orderly structure in the form of sequences of permanent bands 
or slugs of high voidage. 

3. Linear and weakly nonlinear instability 
In the light of the experimental evidence given by El-Kaissy & Homsy (1976) that the 

breakup of voidage waves is followed by motion which suggests bubble or slug 
formation, it seems appropriate to adopt the approach of many other authors in 
looking at the stability of the uniform state and finding under what conditions voidage 
waves grow. Thus, we first perform a linear perturbation analysis by letting 

v = v’, $ = $60+$’, (3.1) 

where v’ and $‘ are small quantities, and substitute these into (2.12) and (2.13). 
Retaining only the linear terms in the perturbation variables, we have 

with (3 3) 

If we assume Po is O(1) and use F2 g 1, then examination of (3.2) indicates that over 
scales where x and t are both O(l), the appropriate equation for 4‘ is 

a$/ a$’ 
-+ao- = 0 
at ax , (3.4) 
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so any disturbance propagates upwards, unchanged in form and with the same 
constant speed ao. 

Over long times, we can define a new time variable 7 = F2t and when this is O( I), 
equation (3.2) becomes 

where X = x- a. t and yo = (n + 1) + o / R .  The corresponding dispersion relation can be 
found by substituting 

(3.6) 
into (3.5) to give 

w(k) = -yok3-i$o(&-a:)k2+O(FF2). (3 7) 

Thus on this long timescale, the particle viscosity has a dispersive effect, whilst the 
particle pressure is diffusive, and stabilizing if P, 2 a:. These linear diffusive and 
dispersive mechanisms naturally cause any initial concentration of voidage or particles 
to be relieved. 

The stability condition P, > a: was derived in the limit F2 4 1, but in fact it applies 
for all wavenumbers at any value of F, as indicated by Needham & Merkin (1983). 
However if Po < a:, then for some k,, modes with wavenumbers k 2 k,  are stable and 
those with 0 < k < k,  are unstable (see Appendix A). We note that P, = a: gives 

$‘ = A ei(kX-wr) 

from (3.3) and so for P, < a: to hold for some $o in the range $cp < $o < 1, we must 
have 

p, < g n  + (1 - (3.9) 

We are interested in the marginally unstable case, so we consider a: - Po to be small and 
positive and set 

a:-Po= F-.  8 0  

$0 

(3.10) 

Then for wavenumbers such that k 4 k,, the dispersion relation (3.7) gives the leading- 
order behaviour for the real and imaginary parts of o. For larger wavenumbers where 
k - k,, a rescaling is required and gives rise to a fourth derivative on the right-hand 
side of (3.5) to balance the amplification term (see Appendix A). Here, we will just be 
concerned with the k < k, approximation. 

In the unstable situation P, < a:, disturbances of small but finite amplitude will grow 
and eventually nonlinear effects must be included. We note that numerically there will 
be problems because in (3.5) any short-wave components will grow much more rapidly 
than the longer wavelengths so that the problem appears ill-posed. However, this is 
spurious and is due to the neglected terms such as a fourth derivative which control the 
growth. (See (A 18) for the specific form.) It is only in the fully nonlinear problem that 
equilibration of the long wavelength occurs and so any numerical solution must be of 
the full equations (2.12) and (2.13). 

Needham & Merkin (1983) derive a nonlinear wave equation which has shock 
solutions between states of uniform voidage, but Crighton (1991) disagrees with their 
equation and its formulation. Instead, he balances quadratically nonlinear per- 
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turbations to the linear waves with weak dispersive effects. Here, we simplify the 
analysis given by Crighton (1991) by using the system (2.12) and (2.13) and the scaled 
representations 

u = F2d, $ = #o+ F2#’ (3.11) 
for u and #, together with 

X = x - a 0 t ,  7 = F 2 t .  (3.12) 

This gives the set of equations 

where 

a0 0’ 

$0 $0 

--$’-(1 -(b0)-+ w, = 0, 

(3.13) 

(3.14) 

(3.15) 

and 

+F2 P , # ~ + a , ( l - $ , ) u ~ + - u ~ ,  +O(F4). (3.16) [ R l 1  

We can now eliminate the linear O( 1) terms, to give 

w, + $o a w2px = 0. (3.17) 

= 0 in (3.13) and (3.14), to yield 

u’ = -(n+ l)$’, (3.18) 

which can then be used in (3.17) to give the following Burgers-Korteweg-de Vries 
equation for the voidage perturbation 4‘: 

The O(1) approximation is given by putting the 

(3.19) 

where 

, yo = ( n +  l ) b ,  r;S, = $o(a~-P,),  (3.20) 
R 

so that Po, yo and 8, are 0(1) constants. 

soliton solution 
At leading order, we have the KdV equation, which has the well-known single 

12Yo 2 

P O  
$‘ = - K  sech2[K(x-xo-aot -4yoK2~) ] ,  (3.21) 

where K and xo are arbitrary constants. For Po > 0, we have a soliton of greater 
voidage than the uniform state, propagating upwards with the constant velocity 
c = a, + 47, F2. However, if Po < 0, we would have solitons of lower voidage, i.e. 
a denser fluid-plus-particles mixture, rising through the bed, which certainly appears 
unreasonable if the bed was tightly packed initially. In this case, moreover, regions of 
initially higher voidage would disperse, according to standard KdV theory (see Drazin 
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& Johnson 1989). Normally, for a bed of spherical particles, $o lies in the range 0.4-0.5 
(Leva 1959) and thus, if the index n from the Richardson-Zaki relation is between 3 
and 4, we will have 

$0 < n / ( n  + 21, (3.22) 

which corresponds to Po positive. Therefore, it seems necessary to confine ourselves 
only to analysing the solution when Po > 0, as the only physically realizable situation. 

For the case P, > a:, i.e. So < 0 in (3.19), we have the Burgers-Korteweg-de Vries 
equation, with damping. This equation has been derived by Kuznetsov et al. (1978) to 
describe long-wave perturbations in a liquid with gas bubbles, and by Johnson (1972) 
to describe the surface profile of an undular bore. In fact, the equation given by 
Johnson (1972) has the coefficient 6, able to change sign for different Froude numbers, 
but the paper only considers the equation with damping. Monotonic and oscillatory 
shock solutions are possible between two constant levels, or for small negative So we 
can think of (3.19) as a perturbed KdV equation having soliton solutions with slowly 
decreasing amplitude, as considered by Karpman & Maslov (1977). This obviously 
refers to the stable side of the threshold, so any small initial disturbance will die out 
as it propagates upwards. 

Thus, we are left with the case Po < a:,&, > 0, which yields the unstable 
Burgers-KdV equation, with amplification instead of damping. Analysis of this will 
hopefully give insight into the onset of bubbling, or more particularly slugging, and the 
breakdown of normal fluidization. Of course, our equation for the voidage 
perturbation was derived under the assumption that the perturbation magnitude was 
small, so the perturbed KdV model equation fails when this condition is violated. 
Section 5 will provide the description that replaces this when the perturbations have 
grown to O( 1). 

4. Perturbed Korteweg-de Vries solitons 
We begin with the perturbed KdV equation 

where Po, yo, So > 0 and 0 < F 6 1, and we look for an asymptotic expansion for $' in 
powers of F. Then the leading-order solution satisfies the KdV equation and we can 
choose a single KdV soliton as our initial condition. However, the second-order 
solution has resonant terms which would lead to the expansion breaking down at times 
7 = O(F-'). Therefore, to obtain a solution valid at this time, we need to apply a 
multiple-scales analysis (Leibovich & Seebass 1974; Nayfeh 1973) to equation (4. l), 
whereby dependences on slow timescales of the form Fk7 are introduced into the 
asymptotic expansion for $', in order to eliminate the secular or resonant terms. Here 
we introduce a single slow timescale, 

T =  F7, (4.2) 

which is the timescale on which a voidage soliton changes as it rises. Therefore, we look 
for an expansion for $' in the form 

(4.3) 
replacing (4.1) by 

(4.4) 

$' = $l(X, 7, T )  + F $ , K  7, T )  + . * a ,  

$; + P o  $V> + Yo $>xx = -FSo $>x - F$;.. 
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Thus, still satisfies the KdV equation, but the inclusion of the long timescale T 
allows the 'constants' K and xn from (3.21) to become functions of T. We must also 
modify the displacement term so that the leading-order solution becomes 

where 

Formally, we must write 
a[/& = 4y0 K ~ ( T ) .  

rather than the alternative form 
[ = 4'7, K2( T )  7 

(which also satisfies the condition (4.6) if 7 and Tare treated as independent variables) 
because this latter expression introduces spurious resonant terms into the multiple- 
scales expansion due to the multiplication of the different timescales. Our approach is 
also used implicitly by Ablowitz & Segur (1981, p. 252) and Knickerbocker & Newel1 
(1980). 

To find the dependence of K and x, on T, we need to consider higher-order terms in 
the asymptotic expansion. The equation for $2 in terms of can be obtained by 
substituting (4.3) into (4.4) to give 

(4.9) 

7 = x - x o - - ,  s = 7, (4.10) 

+ P 0 @ 2  41)x + Yo $2xxx = - 60 A x x  - $12- 
If we change variables to 

and set B = K V ,  (4.1 1) 

then 12Yo 2 

P o  
= - K  sech2B, (4.12) 

and (4.9) becomes 

-3 { K K ~  sech2 8 - K K ~  8 sech2 6' tanh 8) -L{K~X,,, 24Y sech' 8 tanh 8}. (4.13) 
P o  P o  

The multiple-scales technique is intended to provide a solution valid for T = O( 1) 
and so we seek a quasi-stationary solution for $2, independent of s. Then there is a 
solution to (4.13) in the form 

(4.14) $2(X,  7, T )  = x + D tanh 8 + ( A  + B6' + C6") sech' 6' tanh B + (D + EB) sech2 8. 

Substituting this expression back into (4.13) yields the consistency conditions 

(4.15) 

(4.16) 

where xnT, A and B are arbitrary functions of T. 
9 F L M  266 
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~(0) = 1 and integrate up the final equality in (4.16) to give 
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Owing to the original non-dimensionalization, we can impose the initial condition 

where 
15 

168, ’ 
&=-  

(4.17) 

(4.18) 

This expression for K shows that there is a jinite-time singularity at T = & and for 
shorter times K is a slowly increasing function, so that the soliton is amplified. The 
finite-time singularity is necessary if the weakly nonlinear soliton is to be amplified to 
a fully nonlinear voidage wave, though of course this singularity will not be present in 
the final waveform. Equation (4.17) can also be found from global ‘energy’ 
conservation, 

m 

(p, #’2 q5> + yo q5’q5kXX) dX = - (m FS, ##Xx dX, (4.19) 
-a, 

using (4.3) and (4.5) in (4.19) and neglecting terms of magnitude O(F2). Substituting 
(4.17) into (4.7) gives an equation for t, namely 

F 
(4.20) 

In the solution given by (4.14), the terms involving A and B can be put equal to zero, 
as they can be absorbed into the first-order solution, by changing K and x, by an 
O(F) quantity. Examining the behaviour of q52 as 6 + + 00 and imposing the condition 
that the medium is undisturbed ahead of the soliton, so q52 --f 0 as 8+ + 00, gives 

From (4.16), we then have 
XOT = - $ao K ,  

so that X , ( T )  = 3 (1 --;y. 
The expression for q52 is now given from (4.14) by 

q5 = - -~(- l+tanh8+~8~sech~Btanh6-8sech~8).  8 80 
5P0 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

The expansion (4.3) for q5’ is valid for 

~8~ < O(F-’), (4.25) 

and while K is still O( l), the solution holds around the soliton core. To find the solution 
outside this region, we need to rescale the coordinates and we can no longer use the 
quasi-stationary assumption, whereby the q52 term depends on the long timescale T but 
not on 7.  It is well known that in such perturbed KdV problems usually there are 
spatially non-uniform effects beyond the core, such as a finite trailing shelf and an 
oscillatory tail (see Knickerbocker & Newell 1980, 1985; Ablowitz & Segur 1981; 
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Karpman & Maslov 1977, 1978). In fact we can deduce the presence of a shelf below 
the soliton by noting that 

16 8, 
+ 2 + - - - ~  as e + - a .  

5 P o  
(4.26) 

This shows that the shelf voidage is less than the equilibrium level 4, and so it 
corresponds to a region of higher particle concentration. The presence of the 
perturbation term means that the soliton can no longer satisfy its infinity of local 
conservation laws and, in particular, both the ‘mass’ and the rate of change of ‘energy’ 
laws cannot hold together without additional spatial structure. As we have seen, the 
soliton itself satisfies global energy conservation to leading order and so the shelf is 
necessary to help conserve mass. We note that the shelf has a slowly varying amplitude 
16F8, K / ~ P ,  relative to the soliton, but it can contribute an O(1) amount to the mass 
balance because it grows in length. The finite nature of the shelf and the existence of 
a tail are not shown here as the adiabatic approximation, in which we just let the 
soliton parameters vary slowly, proves to be sufficient for present purposes. 

The width of the soliton is O(K-’), and within this range I9 is O(l), so (4.25) is 
equivalent to 

T-  T, < O(F2), (4.27) 

which suggests that the solution is valid for the core region until T is within O(F2) of 
the finite-time singularity. In fact, the whole perturbation scheme appears to break 
down at T-  T, = O(F2), since then the original perturbation to the bed has now grown 
to O( 1). However, a reordering of terms and a significant change in K occur before this, 
as terms neglected in the derivation of the unstable Burgers-KdV equation become of 
the same order as the retained perturbation terms. 

To see this, we need to rescale the coordinates near the finite-time singularity by 
writing 

1 - F 2 a f =  T,-T, 2 = F - a ( X - ~ o - ( ) ,  

k ( 0  = F a ~ ( T ) ,  3 = F - 2 a ~ 1 ,  cl = 4y0k2(f), a7 
(4.28) 

where f, 2 and 2 are O(1) quantities. Substituting these back into (2.12) and (2.13) and 
now setting 4 = q50 + F 2 - 2 a ~ ’ ,  v = F2-2av’, gives 

- c1 $i +Po $’$i +yo $292 = - F3a4; - + So 4;9] 

- F”a$o a0[2c, $i2 + (n + 1) (4’2)22] 
- F2--”4, + 4’4k.J + o ( F ’ + ~ ,  F2--a), (4.29) 

where 
Pl = P M O ) .  (4.30) 

We note that dependence on 7 no longer arises at leading order and, as before, we 
will look for quasi-stationary solutions which depend on f and f, but are independent 
of 7. 

The O(Fl fa )  terms on the right-hand side are those which we retained originally, and 
9-2 
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which led to soliton amplification according to (4.17). However, it can be seen that 
when a = +, the cubic nonlinear terms at U(F2-'") become of the same magnitude as 
the previous amplifying ones, and so we must now also keep these. As a consequence, 
although the leading-order solution for the voidage perturbation will still be expressed 
as a KdV soliton, its amplification may be described by an expression different from 
that given in (4.17). 

To see what happens when a = i, we note that the expansion for the perturbation $' 
is given by 

where q, satisfies 

The equation for q2 can be written as 

where 

with the constants p, s, u, p given by 

4' = q1 + Fjq, + O( F;), 

-c1 q 1 i  + P o  41 q1i + Yo q1ie2 = 0. (4.3 1 )  

9 q 2  = - c1 923 + P O ( %  q2)e + Yo qeeef = G2, (4.32) 

(4.33) G2 = -,uq 1 412 - s4; q12 - gq122i  -P(q;)e22 - 41i. - 8 0  q122r 

Yo 
> p = -  Yo c1 q=- 

n+l  
p = 2c , - - ,  

$0 010 1 4 0 '  

The operator adjoint to 9 is 

(4.34) 

(4.35) 

(4.36) 

so we have P q ,  = 0, (4.37) 

from (4.31). By the theory of adjoint operators (Courant & Hilbert 1962), the necessary 
compatibility condition for the existence of q2 is 

but by using 

a: 1 G 2 q l d i = 0 ,  
J -a: 

12Yo 
P O  

q1 = - F2 sech, 22, 

(4.38) 

(4.39) 

it can easily be shown that only the last two terms of G, give a non-zero contribution 
to the integral. The result is identical to the energy criterion which we used in (4.19), 
so there has been no change in the secularity condition. Therefore, we have 

(4.40) F = F"K = (- l JT)? ,  
for f < 0. 

' 1  

For f > a > $, the asymptotic series just reorders itself, with 

$' = q1 + F2-'"q2 + F'+"q, + F2-ag,  + . . . , (4.41) 

where q3 is just the original perturbation solution (4.24), and q2 is given by 

q2 = BO sech2 O tanh 0+ D sech2 8+ h sech4 0, (4.42) 

with B, D and h suitable functions of f. The important point to note is that there has 



Voidage disturbances in gas-fluidized beds 257 

been no fundamental change in the solution, but merely a reordering of the error terms 
according to the new size of the perturbation, with the q2 and q3 terms being 
interchanged as compared to the state for a < f .  

However, the shelf terms do not continue simply to exchange places with the terms 
further down the perturbation expansion. A major alteration occurs when the O(F1+u) 
and O ( P a )  terms are of the same size, at a = i, where we have 

$' = q1 + Fq, + Fig3 + ... . (4.43) 

Then the O(Fi) terms are given by 

(4.44) 

(4.46) 

but this time the additional terms do affect the secularity condition. Instead of the 
differential equation for K given in (4.16), we now obtain 

k p  = bZ3 + d 2 ,  (4.47) 

where (4.48) 

Thus we have an additional term proportional to R5 on the right-hand side. Equation 
(4.47) can be integrated to give 

(4.49) 
2b2 1 1 

ln(z+l)-z =-(T-T,), 

where z = b/dk2,  (4.50) 

and is a constant. For z large, i.e. R small, this reduces to the original dependence 
(4.17) of K on T. This rescaling is equivalent to putting d = 0 in (4.47). For z small, i.e. 
R large, we can expand the logarithmic term in powers of z to give the approximation 

d 

so that 
;=[ 1 1 f  - 1 ,  

4d( T, - T )  

(4.5 1) 

(4.52) 

which gives a new dependence of the amplitude on the time, from which it can be seen 
that the singularity is weakened and no longer depends on b. 

To formalize the small-z approximation, which is valid for a > f, we can think of a 
as giving a scaling for K ,  which in turn determines a scaling on T. Thus if we leave the 
timescale arbitrary for the moment, by writing 

T- T, = F"T', 
but still use the scalings 

(4.53) 
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as before, then the time derivative becomes 

(4.55) 

If we again look for quasi-stationary solutions independent of 7, then instead of (4.29) 
we now end up with 

- F2-a a, [2c1 $& + (n  + I )  ($'2)i2] 

- F2-" $, Pl [($i)2 + $'$;,I - F'-"+"[$$,] - F1+a[80 $;2] 

+ 0('4-4a, ~ 4 - 3 a  F6-6" p - m + z a  p - m t a  , > > ). (4.56) 

For a slowly varying soliton solution to exist, the F1-m+3a$$, term (which had the 
same magnitude as the O(F2-") terms at a = f )  must remain of this order, and so 
therefore we impose the constraint 

m = 4a- 1 .  (4.57) 

Accordingly, for a range of a such that a > i, we set 
T-T = F4a-1 T' 

0 (4.58) 

We now have the asymptotic solution 

$' = q1 + F2-2aq2 + F2-"q3 + Fltaq4 + F4-4aq5 + . + .  , (4.59) 

and the secularity condition is given by 
m 

G4qldf = 0, (4.60) J-, 
where 

This yields the following differential equation for i as a function of T ' :  
G4 = - 4lT' - $0 a0 12Cl 4122 + (n  + 1) (43221 - $0 4 1(41d2 + 41 412iI. (4.61) 

kT, = dk5, (4.62) 

with d as in (4.48). Integrating (4.62) gives 

;=i 1 ] f 
4d( Ti  - T')  ' 

(4.63) 

which agrees with the small-z approximation of (4.49). Therefore, the two regions 
governed by the different dependences of R on the time in (4.40) and (4.63) are matched 
via the intermediate region given by (4.49). The displacement 6 can also be found using 
(4.28), (4.58) and (4.63), and can be written 

(4.64) 

Thus, it becomes O(1) when a = 1, and the original logarithmic dependence on the 
time, given by (4.20), has now been replaced by a square-root dependence. 
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We suggest that there are in fact no further changes in the dependence of i on T' 
until a = 1, when there is a major alteration in the solution. 

5. Finite-amplitude solitary waves 
In this section, we examine what happens at a = 1, when there is a fundamental 

change in the solution. Then, the soliton amplitude has become O(1), the soliton 
velocity c, in the moving frame has become of the same order as the velocity of the 
translating frame itself, and all the nonlinear terms of the form F2"-2"a in the 
perturbation expansion for $' have come together and are O(1) too. Now the equations 
are fully nonlinear, and we demonstrate that they have solitary wave solutions for the 
voidage fraction at leading order. These O(1) solitary waves cannot be expressed in 
closed form and the equation for their profile must be integrated numerically, but 
information about the conditions necessary for their existence can be obtained from 
consideration of the phase-plane diagram. An integral expression can be found, 
relating the velocity to the amplitude of the wave, which is a common feature in 
nonlinear wave theory. 

If we retain the perturbation terms that are O(F)  compared to the leading-order 
solitary wave terms, then we can apply a multiple-scales analysis in the same way as 
for the KdV soliton, and allow the velocity (and hence amplitude) to vary on a long 
timescale. An integral form can be found for the secularity condition, but again an 
explicit expression is unavailable. However, if we consider the amplitude of the solitary 
wave to be small, then it can be shown that this secularity condition reduces to the one 
in (4.60) and (4.61) for R when a > t. This substantiates our claim in the previous 
section that all the intermediate regions have been found and that the solitary wave 
does indeed match back onto the KdV soliton. Thus, there is no need for a fast-time- 
dependent transitional zone and this is an important feature of the analysis. It will also 
be shown that although the solitary waves are growing initially, they eventually tend 
to a limiting voidage which only depends on n and $o. 

To find the relevant equations for the fully nonlinear waves, we must return to the 
original system (2.12) and (2.13). Then, we rescale the variables using 

where $, 0, < and ? are O(1), and write 
$=$,  ~ = 0 ,  C = F - ' ( x - x , - &  T - T = F ' f ' ,  (5.1) 

a&@ = ~ - 1  C. ( 5 4  

c$p+[(1-$)0]5 = 0, (5.3) 

Substituting these into (2.12) and (2.13), we obtain 

A 1  
(1 -4) ($Y+l(l-- f )  - (1 - $) +-0, R = 4(1-45") (0 - c) ds+p:($) $,I, (5.4) 

where the neglected terms are O ( P )  and c is now an as yet arbitrary velocity. 
If we use a perturbation expansion for $, 0 in powers of F, 

$ = JO+F$,+.-., 0 = 0,+F0,+..., (5.5) 
then the new, fully nonlinear equations have leading-order solutions $,,, ijo satisfying 
the simultaneous equations 

(5.6) "og + [(I - $0) 001c = 0, 
" 1  

(1 - do) (QT+' (1 -2) - (1 - (bo) + o,, = 0. (5.7) 
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Assuming that the bed is undisturbed far above, so that J0 + q50 and do --z 0 as t;+oo, 
the first of these can be integrated to give 

#o - 90 
1-60 

u,, = -c-. 

This expression for do can be used to eliminate the particle velocity from the 
momentum equation to yield an equation for the voidage alone. Substituting (5.8) into 
(5.7) and temporarily dropping the zero subscripts on $ gives 

Despite its formidable nonlinearity, equation (5.9) can in fact be integrated once, to 
yield 

(5.10) 

(5.1 1 )  

Obviously, h(q5,) = 0, and this corresponds to the uniform state far above the 
disturbance, but we also require h(6)  > 0 for a range of $ > #o if solutions of (5.10) are 
to exist. If we consider 

1 
h'(4) = -T+7 

it is easy to see that /~'(r$~) = 0, and we can also show that 

(5.12) 

(5.13) 

which is positive if c > ao. Hence A(#)  has a minimum at q5 = $o, lying on the axis. We 
also note that /I($)++ a3 as $+ 1. If, in addition, we have h(A) = 0, where A is a 
constant satisfying #o < A < I ,  then we will have a closed path in the phase plane on 
taking the square root of (5.10). This represents a periodic solution or, if the period is 
infinite, we have a homoclinic orbit and thus a solitary wave solution to the strongly 
nonlinear equations. Needham & Merkin (1 986) investigate periodic travelling waves 
of the full equations using bifurcation theory and numerical integrations. Here, 
however, we have solitary wave solutions as we are in the long-wavelength limit. 

For an appropriate zero of h(6)  at $ = A ,  we must have at least two turning points 
of h($) in the range (q50, 1) and so we consider what happens when h'(#) = 0. Putting 
the right-hand side of (5.12) equal to zero and rearranging as an equation for c in terms 
of $ gives 

(5.14) 

This function has a single maximum at # = q5c, where 

n/(n+2> < 4(- -=c 1, (5.15) 

provided n l (n+2)  > $0 .  (5.16) 
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FIGURE 1. A plot of solitary wave speed c as a function of 4 for h’(4) = 0. 

h(& 

I b  

1 

FIGURE 2. The graph of h(4) for n = 3 ,  q+, = 0.4 and A = 0.6. 

This restriction on q5, is precisely the condition we imposed in (3.22) in order to have 
/lo > 0 and therefore solitons of high voidage moving through the bed. It is certainly 
significant that it occurs again here as a necessary condition for the existence of high- 
voidage, O(1) solitary waves. 

A plot of c against 6 for h’(6) = 0 is illustrated in figure 1 for q5, = 0.4 and n = 3. 
Examining the graph, we can see that there exist exactly two values q5,, q5b such that 
A’($,) = 0 = h’(q5J and q50 < < 1 provided that 

a, < c < c,,,. (5.17) 

Thus for c lying in this range, we have a maximum and a minimum of h(6)  for 
q50 < 4 < 1, but we also require the additional condition h(q5,) < 0 for there to be a 
zero of h(6)  in the interval q5J. It can be proved that there exists a range of values 
of q5b for which this holds, by using a continuity argument. Noting that when q5, = q5,, 
c = a,, and q5, is then a stationary point of inflexion of A($), so it follows that h(q5,) 
is necessarily less than zero. As c and h are continuous functions, there must be a 
range of values q5, such that h(q5,) < 0. A graph of h(q5) against $ is shown in figure 2, 
where A is the amplitude of the solitary wave. The maximum 6 for possible solitary 
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wave solutions has!(#,) = 0 so that the turning point at $ = $b is on the axis. Then 

A paper by Barcilon & Richter (1986) which is concerned with magma migration 
through a solid permeable matrix examines a set of equations which resemble those 
under study here (see Appendix B). Following their analysis, it is helpful to define 

h($) > 0 for $ho < 4 < (bb. 

r = rtd;  $0 ,  n)  

and to write (5.10) in the form 

(5.19) 

Then if h($) = 0 at the amplitude $ = A, we must have 

c = T(A ; $0, n) ,  (5.20) 

as the integral on the right-hand side of (5.19) is positive for 4, < A < 1. Equation 
(5.20) exhibits the dependence of the solitary wave velocity on the amplitude A of the 
wave. 

Nakayama & Mason (1992) examine a set of equations for magma migration which 
are very similar to those used by Barcilon & Richter (1986), and they have developed 
a different method for determining the conditions under which solitary wave solutions 
can exist. In fact, their method gives sufficient conditions, whereas ours yields necessary 
ones. We will apply their method to the fluidized-bed equations by writing (5.19) as 

where 

Differentiating F($) with respect to $ yields 
F(d) = T($; 4 0 ,  n).  

(5.21) 

(5.22) 

where 
G(z;$) = (&+'-$,"+')(I -$)(~--$~)-(l  -z ) (~-~ , ) (zn+l -~ ,"" ) .  (5.24) 

We note that 
G(40;d) = 0 = G(d;$) (5.25) 

and d2G/dzz = - (n + 1) (n  - (n  + 2) z) zn-l(d - q50). (5.26) 

Thus for 6 > 4, and n / ( n  + 2) > z ,  dzG/dzz is negative, so given that (5.25) holds, we 
must have G(z; $) > 0 for 4o < z < 6. Thus 

dF/d$ > 0, (5.27) 

for n/ (n  + 2) > 6 > $,,, and so F is an increasing function of $ in this range. Therefore 

if 

(5.28) 

(5.29) 

It can easily be shown that F($) > 0 for 1 > $ > and so we have > 0 from (5.21) 
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d 

-20 0 20 

5 
FIGURE 3. A numerically integrated solitary wave profile for n = 3, 9, = 0.4 and A = 0.6. For the 
typical case of glass beads of 50 pm diameter, the solitary wave is approximately 0.5 cm wide and has 
a velocity of the order of 5.5 cm s-l. 

for 6 and A satisfying these restrictions. However, although condition (5.29) is 
sufficient to ensure solitary wave solutions, it is not necessary and there is, in fact, a 
larger range 9.f 6 for which 6; > 0. 

The profile given by (5.19) can be integrated numerically, to exhibit the shape of the 
solitary wave, using Simpson’s rule and a fourth-order Runge-Kutta method, with the 
initial conditions specified at a distance e away from A (Barcilon & Richter 1986; 
Harris 1992). An example of the type of profile obtained is shown in figure 3, with 
n = 3 and #o = 0.4. 

In order to match the solitary wave profile back onto the growing KdV soliton, we 
must allow the velocity c (and hence the amplitude A )  to vary on a timescale T’, where 
T-  T, = F3T’. This results in an extra term FJT ,  on the right-hand side of (5.3), so that 

(5.30) 

Using (5.30), (5.4) and the perturbation expansion given in (5.5), we consider the d1 
and 6, terms. It is convenient to write these equations in the matrix form 

where 
a a 

P = c(1 -q50)-(L), ac 1-f, q = -(1 ac -$lo), 

(5.31) 

(5.32) 
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The adjoint homogeneous problem is then given by 
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where 

Then, if (11, I,)* satisfies (5.33), the secularity condition is given by 

0 = SI:, (1, a, + I 2  a21 dC. 

(5.33) 

(5.34) 

(5.35) 

It can be verified that a solution to the homogeneous adjoint problem is given by 

(5.36) 

and so this can be used to evaluate the integral given in (5.35). 
In order to demonstrate that all the changes in the secularity condition have indeed 

been found for the whole time interval before the equations become strongly nonlinear 
at a = 1, we examine the solitary wave secularity condition, setting 

(5.37) 

First of all, we must integrate the equation for l,?, to obtain 

4 
4, 

I ,  = F2-2a(n+ 1 ) 1 +  0(F4-4a).  (5.39) 

Then, substituting into the secularity condition (5.35) and just retaining the leading- 
order terms, we obtain 

$ (n + 1) 2 d i  s_b F6-m-3a $0 

$fi d i  = 0. (5.40) 

if m = 4a- 1, which is exactly the scaling for a > t, obtained in But F6-m-3U - - F7-7a 

(4.57). Therefore, we have 

(5.41) 
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This is the same as the secularity condition (4.60), (4.61) for a > f when we put q1 = 
and integrate by parts once, This confirms the earlier claim that there were no further 
changes in the dependence of i on the time after (4.63), before the soliton becomes an 
O(1) solitary wave. Further, if we substitute (5.37) and (5.38) back into (5.10) and 
(5.1 l), then we can also recover the 'sech-squared' solution for and we conclude 
that the fully nonlinear solitary wave matches directly back onto the amplifying 
soliton, without the need for a non-adiabatically varying time-dependent region. 

We still need to investigate the amplitude variation to find out what happens to the 
solitary wave. In Appendix B, we consider the special case n = 2, $o < 1 which is 
appropriate for magma flows (Barcilon & Richter 1986). This provides insight into the 
behaviour, as explicit solutions can be found, but an artefact of the scalings used means 
that the amplitude continues to increase, with no finite limit. In the fluidized bed 
context, there is an upper limit on the amplitude and to see this we first rewrite the 
secularity condition (5.35) in the form 

dI/dT' = J ,  (5.42) 
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where J = -  

and 

(5.43) 

(5.44) 

The integrand in (5.43) is positive for A > J0 > $o,  so that dI/dT' > 0. As in the case 
in Appendix B, I is a function of A, G(A) say, and so 

dA d I  
dT' d T  
~ = G ' ( A ) ,  > 0. (5.45) 

Initially dA/dT' > 0, as the secularity condition then reduces to that of the amplifying 
soliton. Thus G'(A) is positive for a range of A > $n, as G is a continuous function of 
A .  But G' cannot change sign, because of (5.45), and so it remains positive. Thus 
dA/dT' also remains positive and therefore the soliton amplitude is a monotonically 
increasing function of time. 

We now show that A has a limiting value and tends to this exponentially. The only 
feasible candidate is the maximum voidage for the existence of solitary wave solutions 
of (5.10) and (5.1 l), which is $ = $b, where h($*) = /z'($~) = 0. Thus, the turning point 
$ b  of h lies on the axis, so h($) > 0 for $o < $ < $b. Equations (5.30) and (5.4) are still 
appropriate, as $, u,  c and the wave amplitude A remain O(l), and perturbing the 
voidage and particle velocity around $ = $b we have 

$ b - $  = F$,+F2$,+..., v = v ~ + F u ~ + F ~ v ~ + ~ ~ ~ .  (5.46) 

The wave velocity c can also be expanded in powers of F using a Taylor series for r, 
but the condition h'($J = 0 implies that P($b; Sb0, n) = 0 too. Therefore there is no 
O(F) term, so 

c = c0+F2c2+..., (5.47) 

and (5.48) 



266 S.  E. Harris and D. G. Crighton 

from (5.14). The appropriate leading-order solution for v can be found by insisting on 
matching to 6, in (5.8), and is given by 

uo = [ 1 -($f+l] (5.49) 

Substituting the perturbation expansions (5.46) and (5.47) into (5.30) and (5.4) 
shows that $1 and vl satisfy 

(5.50) 

(5.51) 

But f$b is a minimum turning point of h, and so therefore h”($b) > 0 and we can write 

$I<< = @$I, (5.52) 
where 

(5.53) 

(5.54) 

n + l  
0 2  = 

Therefore 

as we require $1 to be symmetrical about 5 = 0. To find B as a function of T‘, we need 
to examine higher-order terms. 

$l(g, T’) = B(T’) cash SZC, 

The second-order solutions $z and v2 satisfy 

(5.55) 

(5.56) 
where 

(5.57) 
It can be shown that for a solution to exist, we must have 

Therefore 

where 1 > 0, and thus we have 
dB/dT’ = -lB, 

B( T’) = B, e-IT, 

(5.58) 

(5.59) 

(5.60) 

with Bo a positive constant. From (5.54) and (5.46), 

$ = $b-FBoe-zT‘cosh52~, (5.61) 

which describes the peak of the solitary wave near $ = $b, and the amplitude A is given 
by 

A = cjb - FBo e-‘T, (5.62) 
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so that as T’ +a, A + Qb. Therefore Qb is the limiting size of the solitary wave and is 
reached exponentially. We also note that when the solitary wave was first formed, T’ 
was negative, with T,- T = - F3T’, so that as T’ passes through zero, T becomes 
larger than T, and thus we no longer have a finite-time singularity. 

6. Comparison with experimental data 
In this section, we give numerical estimates for the important quantities and 

parameters in the theory, to see whether these are in agreement with various 
experimental data and observations. 

First, we note that if (3.22) holds, then cco > 1 from (3.3), so the dimensional linear 
wave velocity a0 U, is greater than the interstitial fluid velocity U,. Thus, infinitesimal 
voidage waves propagate through the bed at a higher speed than the fluid. In fact, 
Geldart (1973) suggests classifying beds of solid particles into four groups, 
characterized by the density difference between the particles and the fluidizing gas and 
the mean particle size. Two of these groups, A and B, have bubbles rising more rapidly 
than the interstitial gas (Couderc 1985). The remaining two correspond to cohesive 
powders, which are difficult to fluidize, and powders of large or very dense particles 
which tend to spout (where the fluid only takes a single path up through the bed) and 
where all but the largest bubbles rise more slowly than the interstitial velocity. 
Therefore, our model seems to be appropriate for describing the fluidization of 
powders in groups A and B. The difference between the two is that group A powders 
exhibit uniform expansion before they bubble and a maximum bubble size seems to 
exist, whereas group B particles bubble immediately upon fluidization and bubble size 
appears to be independent of particle size. 

In the linear perturbation analysis given in $3, the short-timescale linear wave 
equation (3.4) and the longer timescale equation (3.5) were derived from (3.2) by using 
the approximations 

In fact, the stronger condition F <  1 is also required for our analysis as, in the 
perturbed KdV equation (4.1), the perturbation terms are O(F) and must be small to 
ensure the slowly varying soliton solution is valid. 

As indicated previously, we can make estimates of these quantities using 
experimental data by Schugerl (1971) if we take v, = ,u,/p, to be the measured 
kinematic bed viscosity. However, we note that the velocities given in the paper are 
superficial and not interstitial gas velocities, so that we must divide the given value by 
Qo = 0.4 for use in our theory. 

For glass beads of 50 pm diameter, typical values of the velocity and kinematic 
viscosity are approximately 5.7 cm s-l and 1.9 cm2 s-l respectively. In order to have the 
ratio F 2 / R  less than unity, we require the disturbance lengthscale h to exceed 0.1 cm, 
which is approximately 20 particle diameters. Thus any h bigger than this will satisfy 
the continuum hypothesis requirement that the lengthscales be large compared to the 
particle size and spacing. For an example, we take h = 1 cm as was apparently the case 
in the experiments of El-Kaissy & Homsy (1976), so that F2 = 0.03 and R = 3 which 
agree with our original assumptions of F2 < 1 and R = O(1). The superficial wave 
velocity which should be observable is then 5.5 cm s-l, with a solitary wave width of 
0.5 cm. The results are similar when we consider larger but lighter polystyrene spheres 
of diameter 250 pm, yielding F2 = 0.15 and R = 6.25 for the same value of h. The 
minimum interstitial fluidization velocity for heavier quartz particles of 175 pm and 

F2 < 1, F 2 / R  < 1. (6.1) 
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silicon carbide particles of 190 pm diameter is around 25 cm s-l, with a kinematic 
viscosity of about 10 cm2 sP1. Thus for F 2 / R  < 1 to hold, we now require a larger value 
of the voidage disturbance length, i.e. h > 0.5 cm. If we use h = 1 cm as before, then 
we have F2 = 0.625 and R = 2.5 so that the Froude number is somewhat bigger. 

We now examine the various different timescales in the problem. The KdV soliton 
voidage profile is a valid description at T = O(l), or equivalently, when the non- 
dimensional time t" = O(FP2), whereas the solitary wave is appropriate when T = O( 1) 
and is O(F2) away from the finite-time singularity. In terms of dimensional parameters, 
for the glass beads the KdV solitons will develop in approximately 65 cm, with the fully 
developed solitary waves forming in 4m. The corresponding distances for the 
polystyrene spheres are 15 cm and 35 cm, while those for the quartz and silicon carbide 
particles are 3 cm and 4 cm. 

The estimates given here seem to agree with the accepted experimental observations 
that beds consisting of smaller (e.g. 50 pm glass beads) or lighter particles (e.g. 
polystyrene spheres) are more stable than those formed from larger denser particles 
(e.g. quartz or silicon carbide), as for these former cases any small disturbances will not 
grow significantly during the upward motion through the bed. For the quartz and 
silicon carbide particles, however, it can be seen that initially small perturbations grow 
rapidly and become O( 1) within a short distance. 

El-Kaissy & Homsy (1976) have made measurements of instability waves in a two- 
dimensional liquid-fluidized bed for flow rates slightly above that necessary for 
fluidization. They note that horizontal bands about 1 cm wide of high voidage 
propagate upward. These coherent, horizontal waves persist at low flow rates. 
However, if the gas velocity is increased, a small planar region exists near the base of 
the bed, but higher up the waves become convex and coalesce. If the amplitude is small, 
then another coherent wave is formed, but if the amplitude is large enough the wave 
breaks up into high-voidage regions, which are suggestive of bubbles. 

The development of transverse structure to such waves has also been observed by 
Didwania & Homsy (198 1) in similar experiments with liquid-fluidized beds which will 
bubble at a high enough flow rate. However, we note that in liquid-fluidized beds the 
development is first of a wavy structure, then turbulent and finally bubbling as the fluid 
velocity is increased, whereas with gas we have bubbling before turbulence. In gas- 
fluidized beds which expand uniformly before bubbling, we expect similar instability 
waves to exist and have the same qualitative behaviour. Needham & Merkin (1984) 
examine cross-channel modes in a two-dimensional model and find that the number of 
unstable modes increases with increasing bed width, creating transverse structure. 
However, in our one-dimensional model, we expect coherent planar waves to exist and 
be stable at all flow rates since there are no such cross-channel modes. The planar 
waves seem to be described well by our O( 1) solitary wave solutions but we expect that 
these may be unstable to two-dimensional perturbations, as found for the similar 
magma equations by Barcilon & Lovera (1989). 

7. Conclusions 
The set of equations governing the behaviour of a uniformly fluidized bed subjected 

to a disturbance of infinitesimally small amplitude can be reduced to an equation for 
the voidage perturbation q5'. Over short timescales, any such disturbance will simply 
propagate upwards at a constant velocity and without change in shape, as the 
behaviour is governed by the standard linear wave equation. On a longer timescale, 
however, unstable linear amplification takes place, following which nonlinear effects 
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become important and must be included. A balance can then be obtained between these 
(weak) nonlinear terms and weak dispersive effects. This yields the Korteweg-de Vries 
equation with either an amplifying or dissipative Burgers perturbation term, depending 
on the sign of the coefficient. Thus we have 

where ,!I,, yo and 8, are constants, 7 is the long timescale and Xis the spatial coordinate 
in a translating frame. An additional fourth-derivative is needed to stabilize short-scale 
disturbances (see (A 18)). 

We restrict ourselves to examining the behaviour when ,!lo > 0, which holds when 
$o < n/ (n  + 2), where is the voidage fraction of the uniformly fluidized bed and n is 
the index in the Richardson-Zaki relation. Experimental measurements of and n 
indicate that this criterion for $o corresponds to the physically plausible situation for 
fluidized beds. As we are interested in the formation of bubbles and slugs from voidage 
inhomogeneities in the bed, we only consider the case 8, > 0, when the KdV equation 
is initially valid, but with small amplification rather than dissipation. As a convenient 
starting point we consider an initial condition of a KdV soliton. This is permissible, 
because the KdV equation itself is completely integrable, and so any initial disturbance 
breaks up quickly into a set of independent solitons, any one of which can then serve 
as the initial condition for the subsequent development in which the new amplifying or 
dissipative mechanism comes into play. The KdV soliton represents a wave with a 
higher voidage fraction than the uniform bed, propagating upwards at constant 
velocity. 

We predict the ubiquitous presence of amplifying solitonic pulses of voidage 
propagating upwards through the bed, while regions with a lower voidage than the 
uniform bed, i.e. regions of higher particle concentration, are dispersed. The soliton 
amplitude has a finite-time singularity, but this is ultimately unimportant, as when the 
soliton grows too large, the assumptions made in deriving the KdV equation (with 
weak amplification) in the first place no longer hold. Nevertheless, the finite-time 
singularity may be taken to indicate that the initially weakly nonlinear disturbance 
eventually becomes fully nonlinear. 

As time goes on, KdV remains the leading-order equation, but the shelf and higher- 
order nonlinear terms reorder themselves in the asymptotic expansion. This leads to 
several changes in the secularity condition and thus alters the time dependence of the 
soliton amplitude, weakening the finite-time singularity. Eventually, all the nonlinear 
terms become of the same order and there is a fundamental change in the solution. A 
new equation is necessary, and it turns out to be quasi-stationary but fully nonlinear 
and dispersive. 

This new fully nonlinear equation has a solitary wave solution and the velocity of 
this can be expressed in terms of the amplitude of the wave. If we allow this velocity 
to vary on a slow timescale, then an expression can be written down for the secularity 
condition required to ensure non-resonant terms at the next order. This is shown to 
reduce to the previous secularity condition obtained for the growing KdV soliton when 
we take a small-amplitude limit for the solitary wave, and the ‘sech-squared’ shape can 
also be recovered. Thus the soliton and solitary wave can be matched directly without 
the need for an intermediate time-dependent region. Further, it is shown that although 
the solitary wave is still being amplified initially, it eventually tends to a limiting size. 
This maximum amplitude (i.e. ultimate voidage within the solitary wave slug) only 
depends on n and $o and there is no longer a finite-time singularity. 
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The presence of the shelf behind the KdV soliton indicates that there is a region with 
a higher particle concentration left in the wake of the developing void. In terms of 
soliton theory, this shelf is needed to conserve mass and here it occurs because some 
of the particles have to be displaced from the void region and must end up in the 
uniformly fluidized part of the bed below the void. The shelf does not grow to become 
O( 1) in amplitude but it does grow in length, contributing an O( 1) amount to the mass 
balance. Thus instead of a small region behind the soliton becoming very concentrated 
and defluidized, a large portion of the bed is left with a higher particle concentration 
than before. Thus, it appears that the voidage waves remove some of the excess fluid 
which is not required to maintain uniform fluidization. 

The model appears appropriate for describing the propagation and evolution of 
voidage waves due to perturbations in the bed. There is some experimental evidence 
that it is the breakup of such waves that leads to bubble formation in a two- 
dimensional bed, but that these structures persist in narrow tubes. Thus, it is plausible 
to interpret the behaviour as the second type of slugging, where there are alternating 
horizontal bands of high and low voidage with particle raining at the interfaces. So one 
solitary wave corresponds to one void and we need a succession of such waves. It is 
possible that the oscillatory tail attached to the back of the shelf may help induce 
further bands of void and particles to form lower down the bed, thereby giving the 
periodic slugging behaviour which is observed. 

Our approach has successfully described the initial growth of an arbitrarily small 
disturbance (of large enough spatial length so that the Froude number is small) first 
into a soliton-like voidage perturbation in the bed and then through all the 
intermediate regions until it has developed into a fully nonlinear planar wave, with a 
well-defined maximum size. This has not been done before for any of the fluidized bed 
models in the literature and we believe that it represents a significant step forward in 
the understanding of slug formation. It also represents, we believe, an unusual 
contribution to nonlinear wave theory, which usually concentrates on either the weakly 
nonlinear limit or the fully nonlinear case for travelling waves, without showing the 
continuous development, through a hierarchy of recognizable intermediate stages, 
from one initial situation to the final one. 

Since this work was completed, the authors have had sight of the forthcoming paper 
by Hayakawa, Komatsu & Tsuzuki (1993). This paper identifies KdV as the relevant 
equation in the weakly nonlinear regime, but does not attempt to describe the evolution 
of faint KdV voidage solutions into large-amplitude voidage slugs, as has been done 
in the present paper. We reject the implication in 95 of Hayakawa et al. (1993) that 
our ‘correction to KdV is, however, not correct’. 

One of the authors (S.E.H.) gratefully acknowledges the support of a Research 
Studentship from the SERC and of a Research Fellowship at Sidney Sussex College, 
Cambridge for the period in which this research was carried out. 

Appendix A. Stability for all wavenumbers 
The full linearized equation (3.2) can be written 

9 :+~n9ruxx+( “~ -~n )~n9~x -2~~9o0~n9 :x -~~ I /O9 :xX+~~9n9~~  = 0, (A 1) 
“0 

using the transformed coordinates given in (3.12). We can then investigate the linear 
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stability of this without making any assumptions about the size of the Froude number. 
Firstly, we set 

where the complex frequency w is given by 

7 (A 2) 

(A 3)  

4' = A ei(kX-w) 

w = w, + h i ,  

and substitute (A 2) into (A  1). Equating the real and imaginary parts yields two 
simultaneous equations which can then be solved to give 

[4F4P, 4: k2 -p2 + {(4F4P0 4: k2 -p2)' + 16F44 4: k'}:]:, "Ok 1 
~2 -2  4 2 ~ 4 4 ,  

w, = --+ 
(A 4) 

0.  = - -4F44 4: k2 + {(4F4P0 4: k2 -,u~)~ + 16F4a: 4: k2}i]i 
2 ~ 4 4 ,  

(A 5 )  

where p = 1 +F2k2yo/ao. (A 6 )  

Po = m i / (  1 + F2k2yo/ao)2, (A 7 )  

w, = -yo k3(1+ ~ 2 k 2 ~ , / ~ , ) - 1 .  (A 8) 

Po = a:/( 1 + F2k,2 ~ ~ / a , ) ~ ,  (A 9 )  

The neutral stability curve is obtained by putting wi = 0, which gives 

as indicated by Needham & Merkin (1983), and along this curve 

If P, < a:, then we can write 

for some k,. Thus the normal modes with wavenumber in the range 0 < k < k,  are 
unstable and those with k > k ,  are stable, so waves with a long wavelength grow but 
those with small wavelengths decay. If we set 

Po = ":-A,  (A 10) 

then 

and so if d is small, 

Expanding w, and wi in powers of k from (A  9 )  and (A  10) for the positive root gives 

W, = -yo k3 - 2F2& a0 dk3 + O(P),  (A 13) 

(A 14) wi = q50dk2+F2$o - 2 y 0 a 0 + ~ d + O ( d 2 )  k4+O(k6), ( "0 1 
and these are valid for any F and for k, d 4 1. If we now fix d = O(F) and F 4 1 ,  then 
for k < k,  = O(F-i), we have 

4' = exp [i(kX+ yo k37) + $o dk27], 

4: + Yo 4hxx = - 4 0  4 > x *  

(A 15) 

(A 16) 

which corresponds to the equation 
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Thus we have the linearized KdV equation with an amplifying Burgers-type 
perturbation term. If k - k,, then we have 

(A 17) 

(A 18) 

$' = exp [i(kX+ yo k37) + $o(A - 27, a, F2k2) k2T], 

$: + yo $kxx = - $n(d$kx + 270 010 F2$Xxxx).  

so that the correct form of the differential equation is 

Therefore close to the stability boundary, the fourth-order derivative becomes 
important and must also be retained. This has a stabilizing influence and prevents 
the rapid growth of short-scale modes. There is a maximally amplified wavenumber 
k = k, and, accordingly, if $'(X, 0) is the initial distribution, then the distribution that 
evolves over long times in the linear regime is a wavepacket, of carrier wavenumber k,, 
amplitude $(k,, 0), the spatial Fourier transform of $'(X, 0), and extent increasing 
linearly with t. This evolved distribution then serves to determine the nonlinear 
breakup into solitons under KdV. 

Appendix B. Magma equations 
Here we analyse a special case of the fluidized bed system which is valid for $o << 1. 

The leading-order equations have also been derived for magma migration (Barcilon 
& Richter 1986). We begin by rescaling the original system of equations (2.12) and 
(2.13) using 

in addition to 
$ = $ 0 6 ,  = $ 0 5 ,  (B 1) 

(B 2) 
F 2 = ~ 2 $ o ,  0 1 ~ = n + l ,  x = x - a 0 t ,  - - 6 = 1 +F2$', 5 = F'v', 7 = P t. 

Then neglecting terms O($,) yields the equation 

where now 

and we choose pi($) = -Pn for all $. Thus, we have the KdV equation with a Burgers 
perturbation term again and we can investigate the growth of a single soliton solution 
as before. The slow variation of the soliton now takes place on a timescale T = &. 

4; + P o  $'$X + Yo $kxx = - Fa0 $Xx + O(F2)>, (B 3) 

p0 = n(n+ I>, yo = (n+ I ) / R ,  F&,, = a i - ~ , ,  (B 4) 

The fully nonlinear equations can be found using (B 1) together with 

<= F - ' ( X - X ~ - [ ) ,  T-T, = F2f, f =  FT', (B 5) 

C&<+ B,  = F&, 
&(n+l)( 1 - 6) - 1 + 6,/R = F[c2 - (n  + 1)'] Jr  

to obtain 
(B 6) 

(B 7) 

in place of (5.30) and (5.4). If we set - 
c J =  J0+FcJl+..., 5 = u",+Ffi,+..., (B 8) 

then the results analogous to (5.8) and (5.10) for the leading-order solutions are 
* 

60 = 4 1  -$J, (B 9) 
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FIGURE 4. Solitary wave solutions for q50 1 ; -, A = 5. -.-.-, A = 3;  ---, A = 2. 
Sech-squared soliton : . . . . , A = 2.  

Equation (B 10) can be rewritten as 

But the velocity c is given by c = T ( A ;  n) where A is the amplitude of the wave, so we 
have 

I .  nAn+l-(n+ l)A"+ 1 
A" - nA + (n - 1) 

c = (n-1) 

If we take n = 2, then (B 13) reduces to the simple form 

In this case, we can integrate (B 10) to give an implicit expression for the profile $,({), 
c = 2 A + 1 .  (B 14) 

If we put R = 1, this is the same result as that obtained by Barcilon & Richter (1986) 
for their n = 3, q50 < 1 case for magma flows. The solitary wave profiles for this are 
illustrated in figure 4, along with a comparison with a 'sech-squared' soliton solution 
for small amplitude. 

To find the amplitude variation with time, we need to consider higher-order terms. 
The equations for J1 and 6, are given by 

(B 16) c&+ 615 = JOT', 

4" - 6 6  -(n+ I ) A ( l  - u 1 ) - 2 - + S  = [c2-(n+ 1)2]JOo5. 4:+2 $:+l R 



214 S. E. Harris and D. G. Crighton 

The adjoint transformation can be found as before and a solution to the homogeneous 
problem is given by 

1, = (l-C)(l-&(n+l))+- c(n+l) (1 - $in), - l2 = - c$Jog. 
n 

Thus the secularity condition (5.35) now becomes 

m 

[(I -c)(l-&(n+l))+-(l-$;n)]$oT.d<-[ c(n + 1) c [c2 - (n+  1)2]$&d5= 0. 
n -m -03 

(B 19) 

dI/dT' = J ,  (B 20) 
We can rewrite this as 

where 

and 

m 

J = Jprn c[c2 - (n  + 1)2] $icd< 

If we choose K so that the integrand vanishes when $o = 1, which corresponds to the 
state of uniform fluidization, and restrict ourselves to the n = 2 case where 

$ - (X)  t ( A  - JO)t ($o - 1) 

O c -  2A+1 $0 

from (B lo), then 

I=-(-) 3 2A 2R + ' { (2A2 - 2A - 3) ( A  - 1); + 3Ailn [A;+ ( A  - 1);]>. (B 24) 

Similarly, we have 

J = y ( A  + 2) ( A  - 1) (2A + 1);(2R);{(A - 1); ( A  + 2) - 3At In [At + ( A  - l);]}, (B 25) 
so 

dA/dT' = 8(A + 2) ( A  - 1) (2A + 1) AkR 

( A  - 1); ( A  + 2) - 3 ~ ;  In [A; + ( A  - I);] 

If we let A + 1 +P2-2a12yo and d/dT'+k4-4a d/dT' and just retain the leading- 
order behaviour, then (B 26) reduces to the expected result for the final soliton region 
given by (4.62), with d = (64/15) aoyo being appropriate for the $o 4 1 situation. There 
are no roots of the right-hand side of (B 26) for $ > $o, i.e. A > 1 and so there is no 
possibility of the amplitude tending to a limiting value, but this is an artefact of the 
scalings used in (B 1) and so we expect A +co. 
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